【手把手AI项目】五、自己制作图像VOC数据集--用于Objection Detection(目标检测)

只上干货,走起来。

下载标注软件

标注工具MRLabeler下载

https://github.com/imistyrain/MRLabeler.git

在此感谢大神用c++写的这么方便大家的工具。
在这里插入图片描述
下载成功后解压即可。

建立VOC数据集的格式文件

1.建立几个必要的文件

新建立以下的结构文件。
总文件名称为DataLabel,内部有以下几个文件夹及文件

  • Annotations 存有 objection detection在MRLabeler软件中标注得出的图片目标框对应的xml文件
  • JPEGImages 目标图片存放的地方,或者说原图片存放的地方
  • mrconfig 定义label或者说目标检测的类别的文件(下面有讲如何建立)

在这里插入图片描述

2.建立和修改mrconfig的文件

mrconfig.xml 为分类label定义文件,在软件给的demo中有,只需要直接复制更改使用即可,具体路径如下图中所示。
在这里插入图片描述
原xml文件如下:

  • imagedir 源图片所在位置 如上述所建文件应该在JPEGImages中
  • annotationdir XML文件存放位置 如上述所建文件应该在Annotations中
  • labelsdir 图像分割所需要的文件产生,这里利用MRLabeler可以自动生成,无需自己建立
  • classes 目标检测的目标类别定义
    在这里插入图片描述
    更改为(因为这里模拟dataset,弄了几张小狗小猫的图片,所以小猫小狗为 目标label)文件如下:
    在这里插入图片描述
    currentlabelingclass 顾名思义就是用软件打开这个文件的时候第一个默认显示的label class,所以也需要改成classes中的某一个才可以。

3.利用软件进行标注

首先找了几张照片模拟dataset
在这里插入图片描述
之后打开软件,点开文件bin中的可执行文件,如下图
在这里插入图片描述
打开那个dataset文件夹
在这里插入图片描述
开始选择 label的class之后开始标注
在这里插入图片描述
按一下ctrl之后开始用鼠标画框
在这里插入图片描述
画好之后直接按 下一张 > 这个即可
现在来看一下文件的情况。
自动产生了一个labels文件夹,这里不做赘述,因为后面不做分割用不到。
在这里插入图片描述

在Annotations中产生一个和处理图片同名的xml文件,主要分为三个部分组成
文件名和路径,文件自己的大小也就是picture的size,bndbox所示的xmin、xmax、ymin、ymax的值就是目标框的上下左右的x和y坐标的值
在这里插入图片描述

  • 如果标注错误,点击按delete可删除
  • 多标注为 先标注一个,之后按SHIFT按键可再次 标注一个框
    如下图所示
    在这里插入图片描述

Reference

此软件做法有使用文档可参考
https://github.com/imistyrain/MRLabeler/blob/master/MRLabeler使用说明.pdf

©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页